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Many common surface colour names such as “beige” lack technical definitions. This paper uses a data 

set of about 16,000 reflectance spectra of named physical samples, collected by the Color Association 

of the United States (CAUS), to infer definitions for 20 common non-basic surface colour names (aqua, 

beige, coral, fuchsia, gold, lavender, lilac, magenta, mauve, navy, peach, rose, rust, sand, tan, taupe, 

teal, turquoise, violet, wine), as well as Berlin and Kay’s basic names (excepting black). A convex 

polyhedron in the Munsell tree is constructed for each name. Any colour inside the polyhedron, and 

only such a colour, is described by that name, with the implicit understanding that the polyhedron’s 

boundaries are inherently fuzzy; the polyhedron’s centroid can be taken as the name’s focal colour. 

Accompanying files make the polyhedra publicly available. The current analysis is unique in using a 

three-dimensional definition, in its large number of surface colours, and in its inclusion of non-basic 

surface colour names. After presenting the analysis results, comparisons are made to other 

investigations of naming. 
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Introduction 

While colour perception is non-verbal, humans typically assign names to colours. Though commonly 

understood, colour names lack the objective, technical definitions that are required by many practical 

applications, especially automated applications. This paper infers such definitions from a data set, 

collected over several decades by the Color Association of the United States (CAUS), of about 16,000 

named and measured physical samples. A colour name is formulated as a subset of the commonly used 

Munsell colour system, which classifies object colours by three basic perceptual attributes: hue, value, 

and chroma. The Munsell system can be drawn as an irregular cylinder, called the Munsell tree. The 

subset defining each name is a convex polyhedron in the Munsell tree. Any colour inside a name’s 

polyhedron is consistent with that name, and the polyhedron’s centroid is a single colour that best 

typifies that name.  
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In 1969, Berlin and Kay [1] identified 11 basic colour names: white, black, red, green, yellow, blue, 

brown, purple, pink, orange, and grey. With a few exceptions, every language, even the most isolated, 

develops names for these colours, and the development occurs, with a few variations, in the order listed. 

Berlin and Kay found the extent of the basic terms experimentally, presenting subjects with a chart, 

indexed by hue and value, of highly saturated Munsell chips, and asking them to indicate which colours 

they considered, for instance, blue. In addition, subjects selected a focal colour which they considered 

the truest exemplar of blue.  

Apart from the 11 basic colour names, the English language identifies many non-basic colours, such 

as aqua or peach. This paper infers definitions for 20 non-basic names (aqua, beige, coral, fuchsia, gold, 

lavender, lilac, magenta, mauve, navy, peach, rose, rust, sand, tan, taupe, teal, turquoise, violet, wine) 

that occur sufficiently often in the CAUS data set. Unlike Berlin and Kay, the entire three-dimensional 

Munsell system is used rather than just the highest-chroma colours.  

For each sample, the CAUS data set provides a name and a reflectance spectrum, from which Munsell 

coordinates were calculated [2]. To define beige, for example, all the samples named beige or some 

variant thereof were plotted in the Munsell tree as a three-dimensional cloud. The cloud, like the other 

names’ clouds, appeared convex, so the convex hull of the beige cloud was found. Since colour names 

are inevitably fuzzy (e.g., one cannot say exactly where red ends and orange begins), and since a fair 

number of outliers, which seemed unduly far from the bulk of the cloud, were noticed, the cloud was 

reduced by discarding all the hull’s vertices, and the convex hull was recalculated on the reduced set, 

producing a polyhedron. This polyhedron defines beige: any Munsell colour inside the polyhedron 

would be called beige, and no colour outside would. Of course, the polyhedron’s boundary is implicitly 

approximate, because there are no hard dividing lines between beige and non-beige. The centroid of the 

polyhedron gives a focal colour for beige—a single colour that most typically represents beige.  

This paper’s main result is such polyhedra for the 20 non-basic colour names, as well as for 10 of 

Berlin and Kay’s 11 basic colour names (black was excluded because of insufficient data). Accompanying 

computer files give the polyhedra’s vertex and face structure, and list the names and Munsell 

coordinates of the samples used in constructing those polyhedra. The paper also presents the polyhedra 

visually, as projections onto two-dimensional sections of Munsell space. An inclusion test based on a 

polyhedron can determine whether or not a particular colour would be characterised as, for instance, 

beige. A table of centroids is also provided.  

The paper is organised as follows. First, the Munsell system, which classifies surface colours both 

rigorously and intuitively, is introduced. Second, the CAUS data set is described, along with some data 

cleaning. Third, the analysis method is presented, with a step-by-step illustrative calculation of the 

polyhedron and centroid for beige. Fourth, the polyhedra themselves are presented and discussed, and 

some applications are suggested. Fifth, the current work is compared to other work on colour naming, 

and some important issues are highlighted. Finally, a summary is given. 

The Munsell system 

Perceptual description 

At the start of the 20th century, the American painter and teacher Albert Munsell developed the 

Munsell colour system, as an educational tool. It has since become common in many visual fields, such 

as graphics and fashion. It applies only to the colours of physical objects, rather than to coloured light 

sources. The Munsell system is helpful because it classifies surface colours by three natural perceptual 

attributes that are basic to art and design: hue, value and chroma.  
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Hue is universally understood. It says whether a colour is red, yellow, purple, etc. Munsell designates 

10 basic hues: R (red), YR (yellow-red, or orange), Y (yellow), GY (green-yellow), G (green), BG (blue-

green), B (blue), PB (purple-blue), P (purple), and RP (red-purple). Each basic hue is further subdivided 

into 4 steps, denoted with a numerical prefix. For example, the four greens are denoted 2.5G, 5G, 7.5G, 

and 10G. 2.5G is a yellower green, that is closer to GY than it is to BG. 10G is a bluer green, that is closer 

to BG than it is to GY. A prefix of 10 is sometimes replaced with a prefix of 0 and the next hue. For 

example, 10G is equivalently written 0BG. In all, then, the Munsell system specifies 40 hues (4 steps for 

each of the 10 basic hues). These 40 hues are equally spaced perceptually. For example, the hue 

difference between 2.5G and 5G is the same size as the hue difference between 5G and 7.5G. The 40 

hues are discrete stopping points on a continuous hue circle. One could interpolate any desired amount 

between two adjacent hues. For example, the hue 6GY is a yellowish green that is between 5GY and 

7.5GY, but closer to 5GY. White, black, and greys are not considered hues in the Munsell system. An N, 

for “neutral,” is used to designate them.  

Munsell value designates how light or dark a colour is. The theoretically darkest black has a value of 

0, and is denoted N0. The theoretically lightest white has a value of 10, and is denoted N10. N0 and N10 

are theoretical ideals, that actual materials approach, but have so far not reached. Most blacks are about 

N1, rather than N0. Similarly, common whites are just below N10. Between N0 and N10 are 9 

progressively lighter greys, denoted N1, N2, and so on up to N9. The spacing between the greys is 

perceptually equal. All colours have a Munsell value, not just the neutrals. For example, there are light 

blues and dark blues. A blue with value 8.5 has the same lightness as N8.5.  

Munsell chroma refers to how intense, or saturated, a colour is. For instance, a lemon is an intense 

yellow, while masking tape is a dull yellow. A dull colour is closer to a neutral grey than an intense 

colour. The Munsell system denotes chroma numerically. Greys have chroma 0. A colour with a chroma 

of 10 or greater is generally perceived as saturated, and it is rare to encounter chromas greater than 

about 16. Colours of low chroma, say 4 or less, are perceived as subdued, with a high grey content. It is 

often difficult to distinguish the hue of low-chroma colours. For example, one cannot say readily 

whether masking tape is more yellow or more orange. The hue of high-chroma colours, by contrast, can 

easily be identified.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: The hue leaf for 10R in the Munsell system. 
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Many different colours can have the same hue. Figure 1, for example, shows the “hue leaf” for 10R, a 

set of colours all of which have hue 10R. The different colours within a hue leaf are specified further by 

value and chroma. Any colour with a particular hue and value has a maximum attainable chroma, which 

occurs at the rightmost end of the horizontal bar of colours of that value, in that hue leaf. Figure 1 shows, 

for instance, that the maximum chroma for hue 10R at value 5 is about 18. The limits in the figure are 

theoretical limits that practical exemplifications, made with actual pigments or inks, likely cannot reach. 

The empty boxes indicate colours that are in the Munsell system, but that are beyond the gamut of the 

process used to produce the figure. Each hue leaf increases in chroma as one moves to the right, and 

decreases as one moves to the left. The left edge of each hue leaf, in fact, transitions smoothly into a 

vertical neutral axis, consisting solely of greys, whose chroma is 0.   

The Munsell notation for a colour takes the form H V/C, where H stands for hue, V stands for value, 

and C stands for chroma. For instance, the colour 10R 7/6 would be a fairly light (V is 7), moderately 

intense (C is 6), orangish red (H is 10R). A colour with chroma 0 is a neutral grey, which is denoted NV, 

where V stands for value. For example, N5 is a grey that is midway between white and black.  

A three-dimensional Munsell tree, shown in Figure 2, can be constructed by placing the far left, or 

neutral, edges of all the hue leaves along a common vertical axis. Since the hue leaves have different 

shapes, the Munsell tree as a whole is irregular, extending out to different distances at different heights, 

depending on the leaf. The leaves are placed sequentially by hue (red, yellow-red, yellow, green-yellow, 

etc.), forming a smooth circle. The colours of maximum chroma, for a given hue and value, occur on the 

tree’s outer surface, which consists of the rightmost edges of the hue leaves. Berlin and Kay used these 

maximum-chroma Munsell chips in their experiments.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2: The Munsell tree. 

 

Early versions of the Munsell system were collections of hand-painted swatches, which were used as 

physical standards for judging other colours. A major advance was the 1943 Munsell renotation [3], 

which superseded previous versions and is the standard today. The renotation used thousands of visual 

assessments of paint samples, by 41 human observers, to provide a firm empirical and quantitative basis 

for the system. Furthermore, the renotation can be inverted [2] to calculate a colour’s Munsell 

coordinates from its reflectance spectrum. A reflectance spectrum is found by measuring a colour with 

a spectrophotometer; the spectrum gives the percentage of light that the colour reflects at each 

wavelength.  
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It should be noted that the Munsell system applies only to surface colours, and not to coloured lights, 

such as the RGB signals produced by an electronic display. This distinction is important because some 

recent colour naming studies have used RGB signals as samples, and it is not clear how to convert 

between RGBs and Munsell coordinates. As a consequence, their data cannot be merged with the CAUS 

data without some additional analysis.  

 

Coordinates for the Munsell tree 

The Munsell tree can be conveniently coordinatised with cylindrical coordinates. Let the base of the 

cylinder be a plane, shown in Figure 3, coordinatised by a hue angle θ and a radial distance r, where r 

is Munsell chroma. The hue angle starts at 0 on the right-hand horizontal axis which corresponds to the 

hue 0R, and increases counterclockwise to 360◦, advancing evenly through the hues YR, Y, etc. The 

vertical axis, denoted z, corresponds to Munsell value. Another convenient coordinatisation for the 

Munsell tree is Cartesian coordinates, in which the vertical coordinate z stays the same, but the 

horizontal coordinates use the standard polar transformation:  

 

x = r cos      (1) 

y = r sin      (2) 

 

The conversions between Munsell, cylindrical, and Cartesian coordinates are straightforward, and this 

paper will switch between them as needed.  

Figure 3: The Hue-Chroma base plot for the Munsell tree. 

 

A set of all Munsell specifications that correspond to a particular colour name, such as beige, can be 

plotted in the Munsell tree. These sets will be found to be convex: if two colours are in the set, then any 

colour on the line segment that connects them is also in the set. In colour terms, any colour that is 

between two versions of beige is itself a version of beige. Technically, our set of colours is actually a 

finite set of discrete points. To make it into a convex set Γ, we take its convex hull, which is the smallest 

convex set that contains all the colours. The result is a convex polytope [4], which in the three-

dimensional Munsell tree is a polyhedron.  
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(The concept of a “straight” line segment, which is needed for discussing convexity, actually depends 

implicitly on the colour space coordinates. If the Munsell tree were spread out so that the hues lay on a 

straight line rather than on a circle, as was done by Berlin and Kay and many after them, then the 

straight line between two colours would go through a different sequence of intermediate colours. To 

avoid a long discussion of mathematical subtleties, however, we will assume that straight lines and 

convexity are defined in terms of Cartesian coordinates.)  

The centroid C = (Cx,Cy,Cz) of a convex set or polyhedron Γ is, roughly speaking, the middle of Γ. 

Different centroid calculations can be used, depending on the interpretation of the data. One 

interpretation treats the cloud as a set of N equally weighted point masses at (xi,yi,zi):  

 

𝐶𝑥 =  
1

𝑁
∑ 𝑥𝑖

𝑁
𝑖=1      (3) 

𝐶𝑦 =  
1

𝑁
∑ 𝑦𝑖

𝑁
𝑖=1      (4) 

𝐶𝑧 =  
1

𝑁
∑ 𝑧𝑖

𝑁
𝑖=1      (5) 

 

A second interpretation treats Γ as a filled solid, and integrates over it, giving:  

 

𝐶𝑥 =  
∫ 𝑥𝑑𝑥𝑑𝑦𝑑𝑧𝐻

∫ 𝑑𝑥𝑑𝑦𝑑𝑧𝐻

     (6) 

𝐶𝑦 =  
∫ 𝑦𝑑𝑥𝑑𝑦𝑑𝑧𝐻

∫ 𝑑𝑥𝑑𝑦𝑑𝑧𝐻

     (7) 

𝐶𝑧 =  
∫ 𝑧𝑑𝑥𝑑𝑦𝑑𝑧𝐻

∫ 𝑑𝑥𝑑𝑦𝑑𝑧𝐻

     (8) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4: Different centroids from point masses vs. a filled solid. 

 

The two-dimensional example in Figure 4 explains the difference between these two centroid 

calculations. Suppose we have five data points, four on the corners of a square, and one on the middle 

of the bottom edge. Their convex hull Γ is the filled unit square. The centroid of the convex hull is just 

the center of the square, which is marked. The centroid of the data points as point masses, however, is 
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below the center of the square, because Equation 4, which just averages the points’ y-coordinates, 

evaluates to 0.4 rather than 0.5. Adding any number of data points within the square will not change 

the filled-solid centroid, but can change the point-mass centroid, as we have just seen. In practice, 

fortunately, the difference between the two centroids is usually minimal, assuming a fair number of data 

points, distributed without any bias. The point-mass centroid of Equations 3 through 5 is easier to 

calculate than the filled-solid centroid, and more commonly used (see, e.g. [5]), but the current paper 

will use the filled-solid form, so that adding interior points will not affect the centroid. 

The CAUS data set 

The CAUS possesses a collection of fabric samples, taken mainly from the fashion industry. A 

spreadsheet stores 18,706 lines, one for each sample. Each line gives:  

 

1. A year,  

2. A season (e.g. fall, winter, etc.),  

3. A target market (e.g. men, women, youth, etc.),  

4. A name (e.g. Amazon green, Astro orange, etc.), and  

5. A reflectance spectrum, presented as a sequence of reflectance fractions, one for every wavelength 

from 380 to 730 nm in increments of 10 nm. 

 

The data set was augmented by calculating [2] the Munsell specification from the reflectance spectrum 

for each sample. 

Some adjustments were made to the data. A preliminary examination showed that the reflectance 

percentage, at one wavelength or more, for 2245 samples, exceeded 100%. These samples are believed 

to be fluorescent. Since the Munsell renotation only applies to nonfluorescent surface colours, these 

2245 colours were excluded. In the course of analysis, about 60 highly implausible colour names were 

found. For instance, a “Futurist blue” sample had Munsell coordinates 4.75R 4.57/15.46, indicating a 

very saturated red. For lack of an alternative explanation, these samples were dismissed as clerical 

errors. This decision was sometimes delicate, and ran the risk of introducing unintentional bias. When 

in doubt, a sample was retained, on the rationale that boundaries are fuzzy, and the polyhedron 

construction will discard outliers anyway. All the samples that contributed to a polyhedron were 

checked for a questionable name.  

These adjustments left a data set of about 16,400 non-fluorescent samples, with plausible names, and 

this data set was used to infer definitions for 30 different colour names.  

Analysis method 

The form of a colour name definition 

Like most words, colour names arise informally, relying on examples rather than scientific 

formulations. As a result, a name’s definition must be inferred from the way speakers use that word. 

This task is fairly straightforward for colours, because people can indicate physical samples that 

exemplify a colour name. In fact, colour-naming experiments typically present a variety of Munsell 

chips or other samples to a subject, who identifies the ones he would call, for instance, blue. 

Alternatively, a subject might be invited to assign names to samples. This paper infers definitions from 
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the CAUS data set, in which colour names have already been associated with samples, though not as 

part of a formal experiment.  

A colour name, for an object or surface colour, is here defined as the set of all the colours in Munsell 

space to which that name applies. Geometrically, this set will be constructed as a convex polyhedron in 

the Munsell tree. Convexity is perceptually reasonable, because one would expect that if two colours 

share a common name, then any colour directly between them would also share that name. 

Furthermore, all such sets constructed from the data appear convex, with a fair amount of central 

clustering, indicating that a convex model is plausible.  

The boundaries of colour names seem inherently fuzzy. The same sample, for instance, might be 

called blue by some observers, green by others, and bluish green by yet others, implying that the dividing 

line between blue and not-blue is not always clear. The existence of modifiers like bluish also imply that 

observers consciously recognise that a colour is close to blue, but not quite there. To reflect this 

ambiguity, the polyhedron’s boundary, as described in detail in the next section, will exclude some 

colours near the boundary, even though the samples for those colours were sometimes identified as blue 

in the CAUS data. Another motivation for this exclusion is the regular appearance of outliers, samples 

whose Munsell coordinates seem unduly far removed from the bulk of other samples with the same 

name. A name will apply to a colour if and only if that colour, plotted in the Munsell tree, is within the 

polyhedron for that name. This definition acknowledges implicitly, however, that different observers 

might judge that a colour near the polyhedron’s boundary, either inside or outside, is, or is not quite, 

described by that name.  

Some previous work on basic colour names also identified a focal colour, which is the truest or most 

typical version of that name. The focal colour was generally near the middle of the set of all colours of 

that name, which, however, were restricted to the two-dimensional surface of the Munsell tree. The 

concept transfers easily to the three-dimensional tree, where the centroid of a name’s polyhedron is 

taken as the best exemplar of that name.  

 

An example of constructing a polyhedron 

This section illustrates the calculation of the polyhedron and centroid for the name beige. The other 

names follow this example. 

To begin, find all the occurrences of beige in the adjusted CAUS data. This step itself requires some 

care, because the word beige sometimes occurs in the data with modifiers such as parchment beige or 

straw beige, or in a not-quite-English compound such as oakbeige. In addition, the name itself is 

sometimes a modifier, as in beige bisque, or a derivative like beigette is used. (All these examples 

actually occur in the CAUS data.) A simple inclusion test looked for any occurrence of beige as a 

character string within each name; if the string beige occurred, the corresponding sample was taken as 

an instance of the colour beige. Exclusion tests were also used, as needed. For instance, when looking 

for the term yellow, any CAUS names with the term yellowish, such as yellowish orange, were excluded. 

The list of exclusions was often revised after looking at some unexpected sample names; for instance, 

the term yellow green was not allowed to occur in the list for yellow.  

Each appearance of the name was checked for plausibility. In this case, a colour named beige cloud 

was listed, with Munsell coordinates 0.10B 4.27/7.07, a darkish blue that would fit nobody’s idea of 

beige. Colours with such implausible names were eliminated. After these checks and conditions, 277 

non-fluorescent CAUS samples were found that were named some form of beige.  

The Munsell specifications for each of the 277 samples were plotted as a cloud S of points in the 

Munsell tree, shown in Figure 5. The same cloud can be plotted in the hue-chroma plane and the 

chroma-value plane, as shown in Figures 6 and 7.  
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Figure 5: The colour name set for beige. 

 

Figure 6: The colour name set for beige, in the hue-chroma plane. 
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Figure 7: The colour name set for beige, in the chroma-value plane. 

 

The cloud in the hue-chroma plane is the vertical geometrical projection of the three-dimensional 

cloud. The cloud in the chroma-value plane is a coordinate projection onto z and r, eliminating θ; it is 

not a geometrical projection, although it is similar to one if the hue sector is narrow. Figure 6 shows 

that the hues for beige cover the oranges, extending from about 0YR to 10YR, with a few points outside 

that sector, but all well within the “warm” hues. The chromas, as can be seen from either Figure 6 or 7, 

extend from about 2 to 6, so the beiges are mostly subdued but not quite neutral. The values in Figure 

7 extend from about 4 to 8, so the samples are fairly light, but not as light as white.  

Figures 5 through 7 show that a convex polyhedron is a reasonable representation for the beige 

samples, because they are centrally clustered with no gaps. Some samples, however, are also possible 

outliers, being somewhat separated from the main mass of the points; a few are particularly visible near 

the 5R line in Figure 6. On the other hand, it is not incontrovertible that these points are actually 

outliers. As discussed earlier, furthermore, the boundary of a colour name set is fuzzy, so, rather than 

make a point-by-point decision about which points to keep and which to discard, the following method 

was used.  

The set V of vertices of the convex hull H of S was found. These vertices are a minimal generating set 

[4] for H, and all occur on the boundary of H. All other data points are inside the convex hull. Any 

potential outlier is likely in the set V, so we will discard all points in V, getting the set S−V. After the 

discarding, we calculate the convex hull Γbeige of S−V, which has its own set Vbeige of vertices. This 

procedure will eliminate genuine outliers; likely, some non-outliers will also be eliminated. The loss of 

some non-outliers is not a problem, however, because non-outliers are near other points, which will be 

retained. In fact, the resulting boundary given by Vbeige has the desired fuzziness, because some colours 

that are outside the boundary but nearby might be considered beige by some observers, though perhaps 

not by most. We will refer to Γbeige as the inner convex hull, and use it as the polyhedron for a colour 

name.  
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Figures 8 and 9 show H and Γbeige for beige, projected into the hue-chroma plane. Figure 8 contains 

all the points, whether they are outliers or not. In Figure 9, some outliers, as well as some near-outliers, 

have been eliminated, and can be seen as points outside the inner convex hull. In fact, since this figure 

is a two-dimensional projection of a three-dimensional solid, there are several other outliers above and 

below the inner convex hull, that cannot be recognised as outliers. Figures 10 and 11 show further views 

of Γbeige and the eliminated points. Figure 10 shows Γbeige as a polyhedron in the three-dimensional 

Munsell tree, and Figure 11 shows Γbeige in the chroma-value plane.  

Figure 8 (left): The outer convex hull H of the colour name set for beige. 

Figure 9 (right): The inner convex hull Γbeige of the colour name set for beige. 

 

Figure 10: Three-dimensional view of the inner convex hull Γbeige for beige. 
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Figure 11: The inner convex hull Γbeige of beige, in the chroma-value plane. 

 

Once the polyhedron ΓN has been constructed for colour name N, the centroid CN can be calculated 

readily using Equations 6 through 8, and then converted back to ordinary Munsell coordinates. The 

beige centroid works out to 6.7YR 6.1/3.4. This colour is a dull brown with an orangish tint, that is a bit 

lighter than a middle grey. It corresponds fairly well to an average beige, though perhaps a bit darker 

than expected.  

In summary, we have illustrated the construction of a polyhedron Γbeige and centroid Cbeige for beige, 

within the Munsell tree. Colours within the polyhedron would be called beige, and outside colours would 

not be called beige, with the implicit understanding that the polyhedron’s boundary is fuzzy, so colours 

near the boundary would not be unequivocally beige or non-beige. Colours near the center, on the other 

hand, could confidently be described as beige, and the centroid is a good choice for the most typical 

representative for beige.  

 

Scope and limitations of the analysis 

The constructions illustrated in the previous section were applied to a set of 20 non-basic colour 

names (aqua, beige, coral, fuchsia, gold, lavender, lilac, magenta, mauve, navy, peach, rose, rust, sand, 

tan, taupe, teal, turquoise, violet, wine), as well as 10 of Berlin and Kay’s 11 basic colour names (black 

was excluded because of insufficient data), for a total of 30 colour names in all. The names were selected 

from the words that occurred most frequently in the CAUS name category. No precise cut-off was used, 

but every name analysed occurred in at least 25 unique, non-fluorescent samples.  

The current analysis has several limitations: 

1. As far as is known, the samples were viewed and assigned names under uncontrolled lighting. 

2. The data contain many fanciful names such as autumn glow or starlight blue, suggesting a bias 

for distinctive names over more typical names. 
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3. The samples are all from the fashion and clothing industry, and other colour sources (natural 

colours, artist’s pigments, house paints, etc.) do not appear. As a result, some regions of colour 

space might have been neglected or underrepresented. 

4. A related concern is that the fashion industry uses a specialised set of colour terms, or uses 

standard terms in non-standard ways. 

5. Little is known about the “subjects” who assigned the names. Their number is unrecorded and 

there is no information about their age, gender, educational level, etc. Possibly, committees 

rather than single individuals assigned some of the names. 

6. A sample might have been measured long after its name was assigned, and possibly faded in the 

interim. 

7. The current study is limited to English. While basic colour names have equivalents in all 

languages, a term such as navy blue might have no direct counterpart in other languages.  

 

Despite these limitations, the data reflects how colours are perceived and worked with outside the 

laboratory, where lighting is usually uncontrolled, and naming or describing colours is informal. An 

advantage of the CAUS data over planned experiments, in fact, is that the participants assigned names 

without the self-consciousness, caused by laboratory settings and experimenters, that can distort 

results. Later, comparison with other studies will show that concerns like those listed above are typical, 

and probably inevitable when dealing with human perception.  

Another important limitation, often overlooked, is that the current analysis deals with surface colours 

rather than coloured lights. Colour constancy insures that a physical object— but not necessarily a light 

source viewed directly—is perceived as having the same colour, even when a change in illumination 

alters the physical composition of the resulting visual stimulus. The Munsell system used in this paper 

applies only to object colours, and it is not clear how, or even if, it can be extended to coloured lights. 

Some recent large-scale naming experiments use electronically produced colours, which are light 

sources rather than coloured objects; it is uncertain how to transfer our results for the colours of 

physical items to computer-generated colours, and vice versa. 

Analysis results 

Polyhedra 

Polyhedra and centroids were found for each of the 30 names. Details for each name are available in 

a human-readable text file named PolyhedronFiles.zip; other researchers are welcome to use these files 

for further analysis. Figure 12 shows an example file for beige. The file lists the number of samples in 

the CAUS data, and the centroid for that name, in both Munsell and Cartesian coordinates. The next 

two sections give all vertices of the convex polyhedron for beige, in both Munsell and Cartesian 

coordinates. The following section describes each face of the polyhedron as a triangle formed by three 

vertices. For example, the first triangular face is formed by the 12th, 14th, and 9th vertices in the list (the 

choice of Munsell or Cartesian coordinates is irrelevant). Finally, the file lists the samples from the 

CAUS data; each row gives the sample’s assigned name, alongside its Munsell specification.  

 

 

 

 

 

https://aic-color.org/resources/Documents/jaic_v25_03_PolyhedronFiles.zip
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Colour name: beige  

Number of CAUS samples: 277 

Centroid in Munsell coordinates: 6.66YR 6.15/3.40 

Centroid in Cartesian coordinates: 1.70 2.94 6.15 

Polyhedron vertices in Munsell coordinates: 

8.77R  5.22/3.94 

2.03YR  5.02/4.36 

2.58YR  7.21/2.88 

… 

Polyhedron vertices in Cartesian coordinates: 

3.36  2.06 5.22 

3.17  2.99 5.02 

2.03  2.05 7.21 

… 

Polyhedron faces (each entry refers to a row in the listing of vertices): 

12  14 9 

29  18 25 

27  16 4 

… 

Samples, with Munsell coordinates, from CAUS data: 

Sandra Pink-Beige  5.89R 6.18/5.58 

Highland Beige  6.42R 5.70/2.06 

Tenuto Beige  8.77R 5.22/3.94 

Winebeige  1.93YR 5.70/3.38 

Rose Beige No.2  2.03YR 5.02/4.36 

Cocoa Beige  2.10YR 5.81/3.61 

Buffalo Beige  2.11YR 7.20/1.75 

Pottery Beige  2.22YR 5.45/2.24 

Beige  2.29YR 6.83/3.21 

Blush Beige  2.36YR 5.56/3.35 

Cordbeige  2.58YR 7.21/2.88 

Continental Beige  2.63YR 5.51/1.76 

Muscade Beige  2.82YR 4.72/1.99 

Rose Beige No.2  2.92YR 4.69/3.83 

Sandalwood Beige  3.07YR 5.45/4.59 

Crouton Beige  3.16YR 6.20/3.54 

Townbeige  3.23YR 4.54/3.10 

Powder Beige  3.24YR 6.71/4.38 

… 

 

Figure 12: Output file for beige. 

 

Tables 1 and 2, referring to non-basic and basic names respectively, list the centroids for the names. 

Figures 13 through 22 plot the 30 polyhedra geometrically, using projections as described in previous 

section. For the name grey in Figure 15, many points appear to be outside the shaded region, near the 
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neutral axis. In fact, those points are inside the polyhedron, but the polyhedron wraps completely 

around the circle, so the “projection” of its boundary onto the value-chroma plane produces some 

artefacts; in fact, the polyhedrons extend all the way to the neutral axis, and include the low-chroma 

colours that appear outside the shading. 

 

 Colour name Centriod Samples 

1 Aqua 7.4BG 6.2/3.4 119 

2 Beige 6.7YR 6.1/3.4 277 

3 Coral 6.5R 5.8/8.3 215 

4 Fuchsia 4.8RP 4.1/10.3 46 

5 Gold 9.8YR 6.4/7.4 362 

6 Lavender 5.6P 5.4/4.8 47 

7 Lilac 7.8P 5.6/4.8 78 

8 Magenta 3.8RP 3.4/9.4 25 

9 Mauve 1.2RP 5.1/3.9 181 

10 Navy 7.3PB 2.1/3.6 100 

11 Peach 2.9YR 7.0/5.9 102 

12 Rose 0.5R 5.0/7.7 467 

13 Rust 9.4R 3.9/7.4 93 

14 Sand 7.6YR 6.3/3.2 123 

15 Tan 6.3YR 5.2/4.1 129 

16 Taupe 3.2YR 4.7/1.4 76 

17 Teal 1.6B 3.3/4.5 43 

18 Turquoise 1.6B 5.5/5.9 121 

19 Violet 7.0P 3.8/6.2 178 

20 Wine 2.7R 3.0/4.9 83 

Table 1: Centroids for non-basic colour names. 

 

 Colour name Centriod Samples 

1 Blue 0.6PB 4.7/4.6 1673 

2 Brown 2.8YR 4.0/3.7 536 

3 Green  2.0G 5.3/4.7 1296 

4 Grey 9.6P 5.3/0.5 485 

5 Orange 2.5YR 5.7/8.9 378 

6 Pink 0.7R 5.8/7.9 594 

7 Purple 6.8P 3.5/6.4 226 

8 Red 4.3R 3.8/8.8 662 

9 White 2.1Y 8.0/2.0 152 

10 Yellow 2.6Y 7.4/8.0 394 

Table 2: Centroids for basic colour names (except black). 
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Figure 13: Polyhedra and centroids for names (page 1 of 10): aqua, beige, blue. 
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Figure 14: Polyhedra and centroids for names (page 2 of 10): brown, coral, fuchsia. 



Journal of the International Colour Association (2020): 25, 24-54  Centore 

  41 https://www.aic-color.org/                                                                                                                            ISSN 2227-1309 

 

Figure 15: Polyhedra and centroids for names (page 3 of 10): gold, green, grey. 
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Figure 16: Polyhedra and centroids for names (page 4 of 10): lavender, lilac, magenta. 
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Figure 17: Polyhedra and centroids for names (page 5 of 10): mauve, navy, orange. 



Journal of the International Colour Association (2020): 25, 24-54  Centore 

  44 https://www.aic-color.org/                                                                                                                            ISSN 2227-1309 

 

Figure 18: Polyhedra and centroids for names (page 6 of 10): peach, pink, purple. 
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Figure 19: Polyhedra and centroids for names (page 7 of 10): red, rose, rust. 
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Figure 20: Polyhedra and centroids for names (page 8 of 10): sand, tan, taupe. 
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Figure 21: Polyhedra and centroids for names (page 9 of 10): teal, turquoise, violet. 
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Figure 22: Polyhedra and centroids for names (page 10 of 10): white, wine, yellow. 
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Analysis of polyhedra 

The 30 polyhedra show that, with the exception of the neutral colours like grey and white, each colour 

name has a definite hue component, in that the entire polyhedron is restricted to a limited sector of the 

hue circle. For basic colour names like green, the hue sector can be very wide, covering more than a 

third of the circle. For other names, like navy, the sector is very narrow, being restricted to one or two 

standard Munsell hues.  

Similar results occur for chroma. The basic colour names like blue and green extend from some very 

dull samples to some very saturated samples. Neutral colours like grey and white, of course, only 

contain dull samples. Many non-basic names, such as sand and fuchsia, contain a much more limited 

set of chromas; the chromas for sand are uniformly subdued, while the chromas for fuchsia are 

uniformly vibrant—there is no such thing as a dull fuchsia. A few non-basic names, however, such as 

gold and rose, manage to span ten or twelve chroma steps, so they can appear in both subdued and 

intense versions.  

Two pairs of names, pink and red, and brown and orange, verify some common colour intuitions. 

First, a light red, or a light red-purple, would likely be denoted pink rather than red. The value-chroma 

plot for red, shown at the top right of Figure 19, contains very few values greater than 5, while the value-

chroma plot for pink, shown at the middle right of Figure 18, contains very few values less than 5, even 

though the two names span approximately the same set of hues and chromas. While the Munsell hue of 

pink is red or red-purple, viewers seem to prefer the more descriptive term pink for light samples.  

The name brown seems similarly to describe dark, dull versions of the seven or eight standard 

Munsell hues centred around orange. While the hue would be somewhere in the yellow-orange-red, or 

warm, sector, the term brown is preferred to a hue indication. This finding is in accordance with some 

previous work of Bartleson [6], which determined that the definition of brown required three 

dimensions rather than a single hue name. In the current context, the three dimensions of hue (yellow 

through red), value (dark), and chroma (subdued) are needed to define the polyhedron for brown.  

The polyhedron for white seems to exhibit a warm bias, in that most of its hues are near yellow and 

orange, with only a small percentage in the cooler greens, blues, and purples. Theoretically, it would be 

expected that white would apply to any colour of very low chroma and rather high value. With a low 

enough chroma, the hue is irrelevant, and a uniform sampling of Munsell space would produce very 

light, very unsaturated colours that evenly fill out a circle in the hue-chroma plane. A possible 

explanation is sample bias: the CAUS samples might come from a limited number of applications, such 

as fashion and interior decoration, that tend to prefer warm colours, at least for light neutrals. The 

polyhedron for grey, however, where hue should also be irrelevant, shows colours of all hues, suggesting 

that the warm/cool distinction is not as important for greys. The warm bias for white also explains the 

relatively high chroma of 2.0 for the white centroid; had the hues been evenly spaced, cool hues would 

have averaged out warm hues to produce a chroma near 0.0. The grey centroid, for example, has a 

chroma of only 0.5, which would have no discernible hue.  

 

Applications 

The calculated polyhedra allow two main applications: determining whether a particular sample can 

be described by one or more of the 30 colour names, and choosing representative colours for display.  

To assign a name (or multiple names) to a physical colour sample, measure it with a 

spectrophotometer, and calculate its Munsell specification. Convert the Munsell specification to 

Cartesian coordinates, and use the polyhedron vertex and face data in each of the 30 colour name files 

to determine whether the sample is inside a polyhedron. If it is, then that polyhedron’s colour name can 
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reasonably be applied to the sample. Since many polyhedra overlap, multiple colour names can 

sometimes be assigned to the same sample. This feature mirrors human usage, in which a colour could 

plausibly be described as both taupe and beige, for example, or as simultaneously pink and rose. 

Further distinctions can be made if desired. Since the polyhedra’s boundaries are somewhat fuzzy, 

some applications might prefer to consider a sample near a boundary, whether on the inside or the 

outside, as only partially satisfying that colour name. If the sample is near the polyhedron’s centroid, 

on the other hand, the name can be assigned with considerably more confidence. A practitioner could 

require a narrower definition, or accept a broader definition, as a particular application calls for.  

The second application is choosing typical representative colours for design or display work. If a 

client wants a living room wall painted aqua, for example, Munsell specifications can be selected from 

inside the aqua polyhedron, and the client can make a more refined decision by viewing their 

exemplifications in a Munsell book. Or a cosmetic designer might be interested in coral lipstick; then 

the centroid for coral can be taken as a starting point, and the other colours in the coral polyhedron can 

be used as variations. 

Comparison with previous work 

The current analysis shares many common features with previous colour naming investigations, but 

is also unique in some ways:  

 

1. A colour name is defined as a three-dimensional polyhedral subset of Munsell space. Previous 

work used a single-point definition, or sometimes a two-dimensional subset of the surface of the 

Munsell tree. (Sivik and Taft [7] worked in three dimensions in the Natural Colour System (NCS), 

finding “isosemantic” level sets of colours described by a colour name with some degree of 

fidelity.) 

2. The number of named samples is about 16,000, whereas previous surface colour studies typically 

have only a few hundred named samples. 

3. This analysis treats non-basic colour names, while previous surface colour studies usually 

restricted themselves to basic names. 

 

This section discusses these points in greater detail, in the context of other kinds of comparisons, and 

suggests some approaches for further work. 

 

Surface colours vs. digital colours 

All the CAUS samples were physical objects, such as fabric swatches, whose colours result from 

reflection. Digital and electronic devices, by contrast, produce coloured light sources directly. As 

mentioned earlier, conversions between object and light colours are uncertain, so it is difficult to 

transfer surface colour names to digital colour names. This fact is unfortunate, because there are two 

large-scale digital naming studies.  

During the early 2000s, Moroney [8] collected a large digital data set, totalling over 30,000 assigned 

colour names from over 5000 volunteers. The simple procedure involved a central server that randomly 

produced RGBs and displayed them over the internet on observers’ own computers. The observers 

assigned names to the displayed colours, and submitted the names electronically. Data analysis 

produced a central estimate, or focal colour, expressed as an sRGB triple, for each colour name. 

Moroney’s Color Thesaurus is a printed version of the results. Table 3 gives the number of occurrences 
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for the names, using Moroney’s categories of very common, common, rare, and very rare. In all, 663 

colour names occurred. Moroney’s choice of names was sometimes finer-grained than ours; for 

instance, navy and navy blue—whose focal sRGBs are practically identical—are treated as two separate 

names, while we treated them as one. 

 

Description Occurrences Number of names 

very common > 500 12 

common 50 – 500 78 

rare 5 – 50 333 

very rare < 5 240 

Total  663 

 

Table 3: Statistics for Moroney’s survey. 

 

In 2010, Munroe [9] ran a colour survey similar to Moroney’s, achieving over 5 million colour 

assessments from 222,500 participants. Munroe’s experiment also randomly served RGBs for observers 

to view on their own computers. Analysis resulted in focal sRGBs for the 954 most common colour 

names. The names and focal sRGBs have been posted online at www.xkcd.com, and can be freely 

downloaded as a text file.  

 

Control vs. quantity 

 Colour-naming investigations typically face a tradeoff between the quantity of data collected, and the 

control of the conditions. Many laboratory experiments [5, 6, 10, 11] present a limited set of carefully 

measured colour samples to subjects (who have typically been screened for colour-blindness), under 

the controlled illumination of a light box. This approach reduces variability, but usually only a few 

hundred colour assessments can be made.  

A competing approach, exemplified by Moroney’s and Munroe’s internet-based surveys, collects a 

very large quantity of data, at the expense of greater uncertainty. Their internet surveys assumed the 

sRGB standard [12] held universally, meaning that all monitors were sRGB-compliant, calibrated, and 

viewed under dim D50 ambient lighting. Likely none of these conditions held exactly, but, for lack of a 

better alternative, the sRGB model was used, to handle the uncertainty.  

Similarly, the CAUS data set features many assessments, but under uncontrolled conditions. The 

viewing illumination is not known, and could have been different for different samples, or even for the 

same sample at different times. The participants’ motives were also uncertain, and could have more to 

do with marketing than with accurate description. While the set of 16,000 assignments is large enough 

to analyse non-basic names, we have to accept the accompanying uncertainty.  

 

Forced vs. unforced choice 

Another variable in colour-naming studies is the source of the names that can be assigned. In Berlin 

and Kay’s original work, a subject was given a colour name such as red, and shown a grid of Munsell 

chips of maximum chroma, coordinatised by hue and value. The subject would identify which sections 

of the grid he considered red, and then choose the chip he thought was most typically red. Many follow-

on studies used the same format. Some varied the procedure by asking subjects to choose a name from 

a small pool of names. This approach might be called forced choice.  

http://www.xkcd.com/
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The current study, by contrast, as well as most computer-based studies, are open-ended, allowing 

subjects to choose any name they want, resulting in a greater variety of names, and finer definitions. 

The differing approaches reflect differing aims. Berlin & Kay were more interested in linguistics and 

cognition than colours, and were looking for perceptual universals that held regardless of language. The 

CAUS names, on the other hand, aimed, at least on some level, to describe colours. 

 

Form of definition 

This paper delimits a colour name by a polyhedral subset of three-dimensional Munsell space. Berlin 

and Kay’s original work presented subjects with a two-dimensional grid of high-chroma Munsell chips, 

consisting of only those colours on the outer surface of the Munsell tree. Subjects indicated the limits of 

a name such as red on this grid. Lower-chroma colours, inside the tree, were therefore not considered. 

(Some later studies, by Sturges and Whitfield [10], and Boynton and Olson [13], did include some 

interior colours, as did Bartleson’s 1976 investigation [6] of brown.) Duller colours like beige and navy 

blue could therefore not be treated. Furthermore, even most basic colours are incompletely represented, 

because their lower-chroma versions never occur. This paper’s approach, by contrast, is fully three-

dimensional, allowing any Munsell colour as a sample. Other colour definitions are not extended sets at 

all, but rather a single focal colour, either a Munsell specification or an sRGB, that best represents a 

given colour name. A single-point definition is helpful, but incomplete, because most observers will 

readily agree that a name can apply to a range, sometimes a very wide range, of easily distinguishable 

colours. Moroney’s and Munroe’s internet studies, where names are assigned to sRGBs rather than 

Munsell coordinates, could easily perform our polyhedron constructions in the sRGB cube, to map those 

ranges more informatively. Our polyhedron for magenta needed only 25 data points. Table 3 shows that 

at least 90 of Moroney’s names have over 50 data points, and probably many more names have at least 

25, so polyhedra could be generated for a large set of names, much larger than the 30 names treated in 

this paper.  

 

Possible further work 

Colour-naming analysis requires many human assignments of names to colour samples, and the 

more comprehensive the analysis, the more assignments are needed. The 16,000 entries of the CAUS 

data set, for example, allowed previously unanalysed names like taupe and rust. Further work would 

require further large data sets. The data needed has a simple form: a list of physical samples to which a 

human has assigned a name, and the Munsell specifications (or the reflectance spectra, from which 

Munsell specifications can be calculated) for those samples.  

In addition to the CAUS data set, some well-known earlier data sets could be analysed: 

 

1. Robert Ridgway’s 1912 Color Standards and Color Nomenclature [14], measured in 1949 by D. 

H. Hamly [15]. 

2. Maerz and Paul’s 1930 Dictionary of Color [16], measured by various workers [17], with results 

used in Kelly and Judd’s dictionary of colour names [18]. 

3. The Royal Horticultural Society’s 1938 Horticultural Colour Chart [19], whose Munsell 

specifications were determined visually in 1957 by Dorothy Nickerson [20]. This colour chart is 

currently in its sixth edition, and still available. Measurements have been made for some later 

editions, too. 

4. Gladys and Gustave Plochere’s 1948 Plochere Color System [21], whose Munsell specifications 

were determined visually in 1949 by W. E. Knowles Middleton [22].  
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Kelly and Judd’s Color Names Dictionary [18, Section 9] lists references to several other sources.  

Studies involving monitor colours use electronic communication to achieve hundreds of thousands 

of responses with minimal overhead, and minimal time and effort from the participants. Surface colours 

could be analysed similarly, though with more overhead. The author, for example, has assembled a 

shade bank of about 10,000 colours, with measured reflectance spectra, for a particular printer and 

paper. One could randomly select a dozen RGB colours from the bank, print those colours on a sheet, 

and mail that sheet to a participant, who could assign names and submit them electronically. This 

method, of course, would incur costs of printing and distribution, as well as the typical administrative 

costs. 

Conclusions 

This paper has used a large data set, of over 16,000 samples, provided by the CAUS, to assign 

definitions to 30 colour names. 20 of the names (aqua, beige, coral, fuchsia, gold, lavender, lilac, 

magenta, mauve, navy, peach, rose, rust, sand, tan, taupe, teal, turquoise, violet, wine) are non-basic, 

and technical definitions for them had not been studied previously. Each name is defined as the set of 

colours filling a convex polyhedron in the Munsell tree. A Munsell colour inside that polyhedron would 

be assigned that name, while colours outside wouldn’t be; one recognises implicitly, of course, that the 

polyhedron is fuzzy, so colours near its boundary cannot be assigned or dis-assigned that name with 

much confidence. In addition, the centroid of a polyhedron is taken as the most typical representative 

for a particular name. Illustrations of the 30 polyhedra and centroids are provided, as are text files from 

which the illustrations can be produced; other researchers are welcome to use these text files for further 

analysis. After suggesting some applications, this paper’s analysis of surface colour names is compared 

to previous analyses. The current study is novel in that it works directly in three-dimensional colour 

space, uses a very large data set, and treats non-basic names. The paper concludes with some 

suggestions for further investigation. 
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