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ABSTRACT

Nearly all surface colours are located within a colour solid which is defined by complementary optimal
colours and white and black. Special optimal colours with wavelength limits of a “colour half” are called
Ostwald colours. One Ostwald “colour half”, for example with the complementary wavelength limits 470 and
570 nm and the other “colour half” with the wavelength limits 570 and 470 nm, mix two white and are called
antichromatic colours. The chromatic value is defined by the product of the chromaticty difference of cone
excitations and the tristimulus value Y. For example for Yellow the tristimulus value Y is by a factor 8 larger
compared to Blue. This is opposite for the chromaticity difference. Therefore the chromatic value is
approximately constant for all Ostwald colours. The cone sensitivities are calculated from the CIE spectral
tristimulus values. Three parable functions of the same shape with peak wavelengths 430, 540 and 570 nm are
used in a model. The model can describe the four elementary hues Blue B., Green G., Yellow Y, and Red R..
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INTRODUCTION

There are different colour vision properties for related surface colours and unrelated colours in lightimg
technology. This paper studies special surface colours which are complementary optimal colours of a colour
half and which are called Ostwald colours. The spectral reflection has the value one for a colour half and zero
for the other half. The spectral wavelength limits of these colour halves are located on a line in the CIE (x, y)
chromaticity diagram through the chromaticity (x,, y,) of or near CIE illuminant D50 which is a natural
achromatic colour compared to the bluish CIE illuminant 65 and the yellowish CIE illuminant A. For D50 the
Ostwald colours are placed approximately on a circle in a chromatic value diagram (see [1], Table 3 and Fig.
58 for D65, the larger yellow blue extension reduces for D50, see Fig. 6¢ in the following).

In the following the cone sensitivities, the cone excitations, and the tristimulus value excitations are
modeled by parables as function of wavelength. Fig. 5c is based on this model and allows to understand the
existence of elementary colours and their spectral distribution. Fig. 6¢ shows the chromatic values of the
Ostwald colours. The chromatic value 4, is based on the colour confusion lines of tritanopic observers.

THEORY AND EXPERIMENTAL RESULTS
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Fig 1(a, b, c): HPE-cone sensitivities and parable functions with maximum values at 570, 540, 430nm
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Fig 1 shows the cone sensitivities LMS which are calculated by the Hunt-Pointer-Estevez (HPE)
transformation from the CIE spectral tristimulus values. The transformation equations are given in Fig. 1. The
data are still used in a new CIE Technical Report [2]. Many books on colorimetry propose similar peak values,
for example the data 564, 534, and 420 nm of Oleari in [3, page 82]. The colour-black dashed lines model the
three cone sensitivities /(A), m(\), and s(\) by three parable functions in log units. In the short wavelength
range below 530 nm the s(\) sensitivity is reduced by the eye media in the fovea, see [3, Fig. 5.4].
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Fig. 2(a, b, c¢): CIE spectral tristimulus value and cone excitations
Fig. 2 shows excitations of the CIE tristimulus values X and Z and the L cone. The excitation is the ratio of
the value and the tristimulus value Y. Similar the ratio of the tristimulus values X/Y, Z/Y, and L/Y can be used.
The Y value is a linear transformation of the cone values L and M. Instead of the tristimulus values the
spectral values are used in Fig. 2 and the following. Fig. 2c may not be useful for applications.
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Fig. 3(a, b, c¢): Logarithmic sum and differences of the spectral cone sensitivities

Fig. 3 shows example calculations of the sum and differences of the spectral cone sensitivities L and M.
The peak values of L (570 nm, yellow curve) and M (540 nm, green curve) have a difference of 30 nm. The
yellow and green colour is used here to indicate that the peak value is in the yellow or green spectral range.
The logarithmic sum and for example a linear sum differs by only 1% near 400nm and 700nm [3, Fig. 4-36].
The threshold value is 2% compared to the maximum value for surface colours, see [3, Fig. 6.17]. Therefore a
decision of a linear or logarithmic sum is not possible in the case of surface colours. There is a long expert
discussion about the ratio of the weighting factors. The ratio 1:1 is used in Fig. 2¢ and the ratio 1:2 is used in
the HPE transformation. Recent studies show that there are large individual variations in the relative numbers
of cone types and their distribution in the retina [3, section 5.4.6].
A logarithmic calculation in Fig. 3 allows to calculate the same shape for these experimental variations in
cone distributions. Equations (1) to (5) show examples used in the plots of Fig. 3 and the following.
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log V,=0.5[log M, + log L,] (1)
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or log M,=2log V,—log L, 3)

with log V,=1og V,+0.03 4)
The cone excitation is the logarithmic linear ratio or the logarithmic difference

log (M, /V,)=logM,—1log V, ®)]

If the peak values are normalized to one the index (o) is used. The sum and differences produce peak
values below one and in this paper then the index (a) is used. The symbols V, (white-black curve) and V,
(white curve), see Fig. 3a are proportional to the luminous tristimulus value Y. V,(A) is smaller compared to
Vo(M) by the factor 0,97 in logarithmic units and 0,93 in linear units. See also more values in Fig. 3b and 3c.
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In Fig 3a the functions V,(A) and V,(\) are calculated according to equation (1). Similar in Fig. 3b the
L,(\) and Ly(A) functions are calculated from calculated sensitivities R,(A) and Go(\). All calculated
sensitivities are shown by dashed curves. Fig. 3b uses the red and green colours according to the location in
the spectral range. Fig. 3c is similar with peak values 570, 520, and 470 nm. These are the peak values of the
spectral elementary colours, for example the elementary (e) green G, as neither yellowish nor bluish.
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Fig. 4(a, b, ¢): Cone excitation as logarithmic ratio of the spectral or calculated cone sensitivities
Fig. 4 shows the logarithmic ratio of the real or calculated cone sensitivities in Fig. 3a to 3b as function of

wavelength according to equation (5). The slope increases with the difference of the peak values.
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Fig. 5(a, b, ¢): Sensitivities M (540nm), L. (570nm), and O (600nm) on a linear ordinate.

Fig 5a shows a linear ordinate scale for three sensitivities M,, L,, and O,. L, is calculated by the logarithmic
sum of M, and O,. Fig. 5b shows the linear differences of Fig. Sa. For the sensitivity difference

O,(\) — Ly(M\) a dashed curve in red is used because the sensitivity O.(A) is a calculated sensitivity. Together
with similar functions in the blue part around 470 nm (of smaller values?) the hue appearance in the spectral
range according to the elementary (e) colours B., G., Y., and R, can be described.
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Fig 6(a, b, ¢): Peak sensitivities Ly, My, S , confusion lines of P, Dy, Ts observers, and elementary hues.
Fig. 6a shows the location of the peak sensitivities L, M, Sy, the confusion lines of Py, Dy, Ts observers, the
elementary hues B., G., Y., and R, and all Ostwald colours in the CIE chromaticity diagram (x, y). Fig. 6b and
6¢ show the chromatic value of the Ostwald colours under an illumination which appears natural white. The
CIE standard illuminant D50 is near the natural white. The CIE daylight D65 (CCT 6500K) appears bluish
and a tungsten light (CCT 3000K) is yellowish. An illumination with a linear change of the CIE illumination
E(M) of equal energy as function of A appears similar to D50. The spectral distribution is

P()) = N/560nm E(A), and is called POO in this paper. With the linear equations given in Fig. 6b and 6¢ the
antichromatic Ostwald colours have antichromatic colour values and are located approximately on a circle.
The chromaticities (x, y) are shown in Fig. 6a. The CIE tristimulus values differ by a factor 8 (between 88 and
11, see parameter Y in Fig. 6b or 6¢. Therefore the tristimulus value excitation difference a-a,=x/y — x,/y, and
similar for b-b, is by a factor 8 smaller for yellow Y, compared to blue B..
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Fig. 7(a, b): Chromatic values 4y, By, Co ap and chromaticities (a, b) of Ostwald optimal colours
Fig. 7a shows the chromatic values A4, By, and the chromaticities (ao, bo) of the Ostwald optimal colours. The
chromaticity difference of any colour compared to the achromatic colour W, in Fig 7a is by a factor 8
different. If the difference is small the Y values is high and vice versa. In Fig. 1a the chromatic value Cy ap is
approximately independent of hue and of the Y value for the antichromatic Ostwald optimal colours.

RESULTS AND DISCUSSION

The confusion lines 75 and Pp, of the Tritanope (7) and Protanope (P) observers with missing L and S
cones connect the achromatic and the chromaticity of 400 nm and 700 nm in Fig. 6a. The 75 line defines a
basic chromatic value system (4,, B;), see Fig. 6¢, to produce equal chromatic values for the Ostwald colours.
In Fig. 6b the system (4o, Bo) produces a slightly less performance. However, (4o, Bo) matches the property of
CIELAB that elementary yellow and blue is located on the vertical axis and both red and green are shifted
about 30 degree upwards compared to the horizontal axis. Therefore, for the description of the hue angles the
linear chromatic value diagram (4,, B,) is similar to the cube root chroma diagram (a* b*) of CIELAB
because of similar hue angles for the elementary colours [5]. An application example is given in CIE R1-57
[6] which uses the Ostwald colours to describe the border between blackish and luminous surface colours.

CONCLUSION AND FUTURE DEVELOPMENT

All Ostwald colours have approximately the same chromatic value Cyap, see Fig. 7a. For the Ostwald colours
this is surprising because the tristimulus values Y and the tristimulus value excitations, for example x/y = X/Y
vary by a factor 8. The equal chromatic values of the Ostwald colours in Fig. 6¢ are a basis for a colorimetric
description of the experimental results of Holtsmark and Valberg [7]. The experimental equal colour threshold
for all antichromatic optimal colours needs the equal chromatic values. A following paper will develop an
improved colour metric for surface colours and will use cone and tristimulus value excitations.
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